
IBM Cognos Framework Manager
Version 10.1.1

Guidelines for Modeling Metadata

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 53.

Product Information

This document applies to IBM Cognos Business Intelligence Version 10.1.1 and may also apply to subsequent
releases. To check for newer versions of this document, visit the IBM Cognos Information Centers
(http://publib.boulder.ibm.com/infocenter/cogic/v1r0m0/index.jsp).

Licensed Materials - Property of IBM

© Copyright IBM Corporation 2005, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://publib.boulder.ibm.com/infocenter/cogic/v1r0m0/index.jsp

Contents

Introduction . v

Chapter 1. Guidelines for Modeling Metadata . 1
Understanding IBM Cognos Modeling Concepts . 1

Relational Modeling Concepts . 1
Model Design Considerations . 11
Dimensional Modeling Concepts . 19

Building the Relational Model . 21
Defining the Relational Modeling Foundation . 21
Defining the Dimensional Representation of the Model . 30
Organizing the Model . 34

Chapter 2. The SQL Generated by IBM Cognos Software 37
Understanding Dimensional Queries . 37

Single Fact Query . 37
Multiple-fact, Multiple-grain Query on Conformed Dimensions 39
Modeling 1-n Relationships as 1-1 Relationships . 41
Multiple-fact, Multiple-grain Query on Non-Conformed Dimensions 43

Resolving Ambiguously Identified Dimensions and Facts . 47
Query Subjects That Represent a Level of Hierarchy . 47
Resolving Queries That Should Not Have Been Split . 49

Notices . 53

Index . 57

© Copyright IBM Corp. 2005, 2011 iii

iv IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Introduction

IBM® Cognos® Framework Manager is a metadata modeling tool. A model is a
business presentation of the information in one or more data sources. When you
add security and multilingual capabilities to this business presentation, one model
can serve the needs of many groups of users around the globe.

The document discusses fundamental IBM Cognos modeling concepts that you
need to understand about modeling metadata for use in business reporting and
analysis. It also discusses building the relational model.

Audience

This document is intended to help you understand IBM Cognos modeling
concepts.

Finding information

To find IBM Cognos product documentation on the web, including all translated
documentation, access one of the IBM Cognos Information Centers. Release Notes
are published directly to Information Centers, and include links to the latest
technotes and APARs.

You can also read PDF versions of the product release notes and installation guides
directly from IBM Cognos product disks.

Forward-looking statements

This documentation describes the current functionality of the product. References
to items that are not currently available may be included. No implication of any
future availability should be inferred. Any such references are not a commitment,
promise, or legal obligation to deliver any material, code, or functionality. The
development, release, and timing of features or functionality remain at the sole
discretion of IBM.

Samples disclaimer

The Great Outdoors Company, GO Sales, any variation of the Great Outdoors
name, and Planning Sample depict fictitious business operations with sample data
used to develop sample applications for IBM and IBM customers. These fictitious
records include sample data for sales transactions, product distribution, finance,
and human resources. Any resemblance to actual names, addresses, contact
numbers, or transaction values is coincidental. Other sample files may contain
fictional data manually or machine generated, factual data compiled from
academic or public sources, or data used with permission of the copyright holder,
for use as sample data to develop sample applications. Product names referenced
may be the trademarks of their respective owners. Unauthorized duplication is
prohibited.

Accessibility features

Accessibility features help users who have a physical disability, such as restricted
mobility or limited vision, to use information technology products. IBM Cognos

© Copyright IBM Corp. 2005, 2011 v

http://publib.boulder.ibm.com/infocenter/cogic/v1r0m0/index.jsp

Framework Manager has accessibility features. For information on these features,
see the accessibility section in the Framework Manager User Guide.

vi IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Chapter 1. Guidelines for Modeling Metadata

IBM Cognos Framework Manager is a metadata modeling tool that drives query
generation for IBM Cognos BI. A model is a collection of metadata that includes
physical information and business information for one or more data sources. IBM
Cognos BI enables performance management on normalized and denormalized
relational data sources as well as a variety of OLAP data sources.

To access the IBM Cognos Guidelines for Modeling Metadata documentation in a
different language, go to installation_location\c10\webcontent\documentation and
open the folder for the language you want. Then open ug_best.pdf.

Understanding IBM Cognos Modeling Concepts
Before you begin, you need to understand fundamental IBM Cognos modeling
concepts about modeling metadata for use in business reporting and analysis.

Relational Modeling Concepts
When modeling in IBM Cognos Framework Manager, it is important to understand
that there is no requirement to design your data source to be a perfect star schema.
Snowflaked and other forms of normalized schemas are equally acceptable as long
as your data source is optimized to deliver the performance you require for your
application. In general, we recommend that you create a logical model that
conforms to star schema concepts. This is a requirement for IBM Cognos Analysis
Studio and has also proved to be an effective way to organize data for your users.

When beginning to develop your application with a complex data source, it is
recommended that you create a simplified view that represents how your users
view the business and that is designed using the guidelines in this document to
deliver predictable queries and results. A well-built relational model acts as the
foundation of your application and provides you with a solid starting point if you
choose to take advantage of dimensional capabilities in IBM Cognos software.

If you are starting with a star schema data source, less effort is required to model
because the concepts employed in creating a star schema lend themselves well to
building applications for query and analysis. The guidelines in this document will
assist you in designing a model that will meet the needs of your application.

Cardinality

Relationships exist between two query subjects. The cardinality of a relationship is
the number of related rows for each of the two query subjects. The rows are
related by the expression of the relationship; this expression usually refers to the
primary and foreign keys of the underlying tables.

IBM Cognos software uses the cardinality of a relationship in the following ways:
v to avoid double-counting fact data
v to support loop joins that are common in star schema models
v to optimize access to the underlying data source system
v to identify query subjects that behave as facts or dimensions

© Copyright IBM Corp. 2005, 2011 1

A query that uses multiple facts from different underlying tables is split into
separate queries for each underlying fact table. Each single fact query refers to its
respective fact table as well as to the dimensional tables related to that fact table.
Another query is used to merge these individual queries into one result set. This
latter operation is generally referred to as a stitched query. You know that you
have a stitched query when you see coalesce and a full outer join.

A stitched query also allows IBM Cognos software to properly relate data at
different levels of granularity. See “Multiple-fact, Multiple-grain Queries” on page
8.

Cardinality in Generated Queries:

IBM Cognos software supports both minimum-maximum cardinality and optional
cardinality.

In 0:1, 0 is the minimum cardinality, 1 is the maximum cardinality.

In 1:n, 1 is the minimum cardinality, n is the maximum cardinality.

A relationship with cardinality specified as 1:1 to 1:n is commonly referred to as 1
to n when focusing on the maximum cardinalities.

A minimum cardinality of 0 indicates that the relationship is optional. You specify
a minimum cardinality of 0 if you want the query to retain the information on the
other side of the relationship in the absence of a match. For example, a relationship
between customer and actual sales may be specified as 1:1 to 0:n. This indicates
that reports will show the requested customer information even though there may
not be any sales data present.

Therefore a 1 to n relationship can also be specified as:
v 0:1 to 0:n

v 0:1 to 1:n

v 1:1 to 0:n

v 1:1 to 1:n

Use the Relationship impact statement in the Relationship Definition dialog box
to help you understand cardinality. For example, Sales Staff (1:1) is joined to
Orders (0:n).

It is important to ensure that the cardinality is correctly captured in the model
because it determines the detection of fact query subjects and it is used to avoid
double-counting factual data.

When generating queries, IBM Cognos software follows these basic rules to apply
cardinality:
v Cardinality is applied in the context of a query.
v 1 to n cardinality implies fact data on the n side and implies dimension data on

the 1 side.

2 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

v A query subject may behave as a fact query subject or as a dimensional query
subject, depending on the relationships that are required to answer a particular
query.

Use the Model Advisor to see an assessment of the behavior implied by
cardinality in your model.

For more information, see “Single Fact Query” on page 37 and “Multiple-fact,
Multiple-grain Query on Conformed Dimensions” on page 39.

Cardinality in the Context of a Query:

The role of cardinality in the context of a query is important because cardinality is
used to determine when and where to split the query when generating
multiple-fact queries. If dimensions and facts are incorrectly identified, stitched
queries can be created unnecessarily, which is costly to performance, or the queries
can be incorrectly formed, which can give incorrect results.

The following examples show how cardinality is interpreted by IBM Cognos
software.

Example: Query Subjects Behaving as a Dimension and a Fact:

In this example, Sales Branch behaves as a dimension relative to Order Header and
Order Header behaves as a fact relative to Sales Branch.

Example: Four Query Subjects Included in a Query:

In this example, all four query subjects are included in a query. Sales staff and
Order details are treated as facts. Order header and Sales branch are treated as
dimensions.

Chapter 1. Guidelines for Modeling Metadata 3

The SQL generated for this query will be split, treating Sales staff and Order
details as facts. The results of these two subqueries are stitched using the
information retrieved from Sales branch. This gives a report that lists the Sales staff
information by Sales branch next to the Order details and Order header
information by Sales branch.

Example: Three Query Subjects Included in a Query:

In this example, only three query subjects are included in a query. Order details is
not used. Order header is now treated as a fact. Sales staff continues to be treated
as a fact.

The SQL in this example also generates a stitched query, which returns a similar
result as above. Note that a stitch operation retains the information from both sides
of the operation by using a full outer join.

Determinants

Determinants reflect granularity by representing subsets or groups of data in a
query subject and are used to ensure correct aggregation of this repeated data.
Determinants are most closely related to the concept of keys and indexes in the
data source and are imported based on unique key and index information in the
data source. We recommend that you always review the determinants that are
imported and, if necessary, modify them or create additional ones. By modifying
determinants, you can override the index and key information in your data source,
replacing it with information that is better aligned with your reporting and
analysis needs. By adding determinants, you can represent groups of repeated data
that are relevant for your application.

An example of a unique determinant is Day in the Time example below. An
example of a non-unique determinant is Month; the key in Month is repeated for
the number of days in a particular month. When you define a non-unique

4 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

determinant, you should specify Group By. This indicates to IBM Cognos software
that when the keys or attributes associated with that determinant are repeated in
the data, it should apply aggregate functions and grouping to avoid
double-counting. It is not recommended that you specify determinants that have
both Uniquely Identified and Group By selected or have neither selected.

Year Key Month Key Month Name Day Key Day Name

2006 200601 January 06 20060101 Sunday, January
1, 2006

2006 200601 January 06 20060102 Monday, January
2, 2006

You can define three determinants for this data set as follows -- two Group By
determinants (Year and Month) and one unique determinant (Day). The concept is
similar but not identical to the concept of levels and hierarchies.

Name of the
Determinant Key Attributes

Uniquely
Identified Group By

Year Year Key None No Yes

Month Month Key Month Name No Yes

Day Day Key Day Name

Month Key

Month Name

Year Key

Yes No

In this case, we use only one key for each determinant because each key contains
enough information to identify a group within the data. Often Month is a
challenge if the key does not contain enough information to clarify which year the
month belongs to. In this case, however, the Month key includes the Year key and
so, by itself, is enough to identify months as a sub-grouping of years.

Note: While you can create a determinant that groups months without the context
of years, this is a less common choice for reporting because all data for February of
all years would be grouped together instead of all data for February 2006 being
grouped together.

Using Determinants with Multiple-Part Keys

In the Time dimension example above, one key was sufficient to identify each set
of data for a determinant but that is not always the case.

For example, the following Geography dimension uses multiple-part key
definitions for all but one determinant.

Region Region Key State/Province Key City Key

North America USA Illinois Springfield

North America USA Missouri Springfield

North America USA California Dublin

Europe Ireland n/a Dublin

Chapter 1. Guidelines for Modeling Metadata 5

Similar to the example about Time, you can define three determinants for this data
set as follows -- two Group By determinants (Region and State/Province) and one
unique determinant (City).

Name of the
Determinant Key Attributes

Uniquely
Identified Group By

Region Region Key None No Yes

State/Province State/Province
Key

None No Yes

City
Region Key

State/Province
Key

City Key

None Yes No

In this case, we used Region Key, State/Province Key, and City Key to ensure
uniqueness for City. We did this because in the data we were given, some city
names were repeated across states or provinces, which in turn were repeated for
regions.

Determinants Are Evaluated in the Order In Which They Are Specified

There is no concept of a hierarchy in determinants, but there is an order of
evaluation. When IBM Cognos software looks at a selection of items from a query
subject, it compares them to each determinant (keys and attributes) one at a time
in the order that is set in the Determinants tab. In this way, IBM Cognos software
selects the determinant that is the best match.

In the following example, the attributes current month, days in month, and
localized month names are associated to the Month key. When a query is
submitted that references any one of these attributes, the Month determinant is the
first determinant on which the matching criteria is satisfied. If no other attributes
are required, the evaluation of determinants stops at Month and this determinant
is used for the group and for clauses in the SQL.

In cases where other attributes of the dimension are also included, if those
attributes have not been matched to a previous determinant, IBM Cognos software
continues evaluating until it finds a match or reaches the last determinant. It is for
this reason that a unique determinant has all query items associated to it. If no
other match is found, the unique key of the entire data set is used to determine
how the data is grouped.

6 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

When to Use Determinants

While determinants can be used to solve a variety of problems related to data
granularity, you should always use them in the following primary cases:
v A query subject that behaves as a dimension has multiple levels of granularity

and will be joined on different sets of keys to fact data.
For example, Time has multiple levels, and it is joined to Inventory on the
Month Key and to Sales on the Day Key. For more information, see
“Multiple-fact, Multiple-grain Queries” on page 8.

v There is a need to count or perform other aggregate functions on a key or
attribute that is repeated.
For example, Time has a Month Key and an attribute, Days in the month, that is
repeated for each day. If you want to use Days in the month in a report, you do
not want the sum of Days in the month for each day in the month. Instead, you
want the unique value of Days in the month for the chosen Month Key. In SQL,
that is XMIN(Days in the month for Month_Key). There is also a Group by clause
in the Cognos SQL.

There are less common cases when you need to use determinants:
v You want to uniquely identify the row of data when retrieving text BLOB data

from the data source.
Querying blobs requires additional key or index type information. If this
information is not present in the data source, you can add it using determinants.
Override the determinants imported from the data source that conflict with
relationships created for reporting.
You cannot use multiple-segment keys when the query subject accesses blob
data. With summary queries, blob data must be retrieved separately from the
summary portion of the query. To do this, you need a key that uniquely
identifies the row and the key must not have multiple segments.

v A join is specified that uses fewer keys than a unique determinant that is
specified for a query subject.

Chapter 1. Guidelines for Modeling Metadata 7

If your join is built on a subset of the columns that are referenced by the keys of
a unique determinant on the 0..1 or 1..1 side of the relationships, there will be
a conflict. Resolve this conflict by modifying the relationship to fully agree with
the determinant or by modifying the determinant to support the relationship.

v You want to override the determinants imported from the data source that
conflict with relationships created for reporting.
For example, there are determinants on two query subjects for multiple columns
but the relationship between the query subjects uses only a subset of these
columns. Modify the determinant information of the query subject if it is not
appropriate to use the additional columns in the relationship.

Multiple-fact, Multiple-grain Queries
Multiple-fact, multiple-grain queries in relational data sources occur when a table
containing dimensional data is joined to multiple fact tables on different key
columns.

Note that in this section, the term dimension is used in the conceptual sense. A
query subject with cardinality of 1:1 or 0:1 behaves as a dimension. For more
information, see “Cardinality” on page 1.

A dimensional query subject typically has distinct groups, or levels, of attribute
data with keys that repeat. The IBM Cognos studios automatically aggregate to the
lowest common level of granularity present in the report. The potential for
double-counting arises when creating totals on columns that contain repeated data.
When the level of granularity of the data is modeled correctly, double-counting can
be avoided.

Note: You can report data at a level of granularity below the lowest common level.
This causes the data of higher granularity to repeat, but the totals will not be
affected if determinants are correctly applied.

This example shows two fact query subjects, Sales and Product forecast, that share
two dimensional query subjects, Time and Product.

8 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Time is the focal point of the granularity issue in this example. Sales is joined to
Time on the Day key, and Product forecast is joined to Time on the Month key.
Because of the different join keys, a minimum of two determinants must be clearly
identified on Time. For example, the determinants for Month and Day have their
keys identified. Day is the unique key for Time, Month keys are repeated for each
day in the month.

For example, the determinant for Month is as follows.

Chapter 1. Guidelines for Modeling Metadata 9

The Product query subject could have at least three determinants: Product line,
Product type, and Product. It has relationships to both fact tables on the Product
key. There are no granularity issues with respect to the Product query subject.

By default, a report is aggregated to retrieve records from each fact table at the
lowest common level of granularity. If you create a report that uses Quantity from
Sales, Expected volume from Product forecast, Month from Time, and Product
name from Product, the report retrieves records from each fact table at the lowest
common level of granularity. In this example, it is at the month and product level.

To prevent double-counting when data exists at multiple levels of granularity,
create at least two determinants for the Time query subject. For an example, see
“Determinants” on page 4.

Month Product name Quantity Expected volume

April 2007 Aloe Relief 1,410 1,690

April 2007 Course Pro Umbrella 132 125

February 2007 Aloe Relief 270 245

February 2007 Course Pro Umbrella 1

February 2006 Aloe Relief 88 92

If you do not specify the determinants properly in the Time query subject,
incorrect aggregation may occur. For example, Expected volume values that exist at
the Month level in Product forecast is repeated for each day in the Time query
subject. If determinants are not set correctly, the values for Expected volume are
multiplied by the number of days in the month.

Month Product name Quantity Expected volume

April 2007 Aloe Relief 1,410 50,700

April 2007 Course Pro Umbrella 132 3,750

February 2007 Aloe Relief 270 7,134

10 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Month Product name Quantity Expected volume

February 2007 Course Pro Umbrella 29

February 2006 Aloe Relief 88 2,576

Note the different numbers in the Expected volume column.

Model Design Considerations
When building a model, it is important to understand that there is no single
workflow that will deliver a model suitable for all applications. Before beginning
your model, it is important to understand the application requirements for
functionality, ease of use, and performance. The design of the data source and
application requirements will determine the answer to many of the questions
posed in this section.

Where Should You Create Relationships and Determinants?
A frequently asked question is where to create relationships. Should relationships
be created between data source query subjects, between model query subjects, or
between both? The answer may vary because it depends on the complexity of the
data source that you are modeling.

When working with data source query subjects, relationships and determinants
belong together.

When working with model query subjects, there are side effects to using
relationships and determinants that you should consider:
v The model query subject starts to function as a view, which overrides the As

View or Minimized setting in the SQL Generation type for a query subject.
This means that the SQL stays the same no matter which items in the query
subject are referenced. For more information, see “What Is Minimized SQL?” on
page 12.

v The model query subject becomes a stand-alone object.
This means underlying relationships are no longer applied, except those between
the objects that are referenced. It may be necessary to create additional
relationships that were previously inferred from the metadata of the underlying
query subjects.

v When a determinant is created on a model query subject, the determinant is
ignored unless a relationship is also created.

Here is an example of a relationship on a model query subject that purposely
overrides the Minimized SQL setting and simplifies the model. In this example,
Order Header and Order Details are combined so that they behave as a single fact.
They are placed in their own folder and all relationships to them are deleted
except the relationship between Order Header and Order Details. This is the only
relationship that will matter after a model query subject is created and
relationships attached to it.

Chapter 1. Guidelines for Modeling Metadata 11

To decide where to specify relationships and determinants in the model, you must
understand the impact of minimized SQL to your application.

For more information about relationships, determinants, and minimized SQL, see
the Model Advisor topics in the IBM Cognos Framework Manager User Guide.

What Is Minimized SQL?
When you use minimized SQL, the generated SQL contains only the minimal set of
tables and joins needed to obtain values for the selected query items.

To see an example of what minimized SQL means, you can use the following
Product tables. Four query subjects, Product Line, Product Type, Product, and
Product Multilingual all join to each other.

They can be combined in a model query subject.

12 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

If you test the Products model query subject as a whole, you see that four tables
are referenced in the from clause of the query.
select
PRODUCT_LINE.PRODUCT_LINE_CODE as Product_Line_Code,
PRODUCT_LINE.PRODUCT_LINE_EN as Product_Line,
PRODUCT_TYPE.PRODUCT_TYPE_CODE as Product_Type_Code,
PRODUCT_TYPE.PRODUCT_TYPE_EN as Product_Type,
PRODUCT.PRODUCT_NUMBER as Product_Number,
PRODUCT_MULTILINGUAL.PRODUCT_NAME as Product_Name
PRODUCT_MULTILINGUAL.DESCRIPTION as Product_Description,
PRODUCT.INTRODUCTION_DATE as Introduction_Date,
PRODUCT.PRODUCT_IMAGE as Product_Image,
PRODUCT.PRODUCTION_COST as Production_Cost,
PRODUCT.MARGIN as Margin
from
gosl_82..gosl.PRODUCT_LINE PRODUCT_LINE,
gosl_82..gosl.PRODUCT_TYPE PRODUCT_TYPE,
gosl_82..gosl.PRODUCT PRODUCT,
gosl_82..gosl.PRODUCT_MULTILINGUAL PRODUCT_MULTILINGUAL
where
(PRODUCT_MULTILINGUAL."LANGUAGE" - N’EN’)
and
(PRODUCT_LINE.PRODUCT_LINE_CODE = PRODUCT_TYPE.PRODUCT_LINE_CODE)
and
(PRODUCT_TYPE.PRODUCT_TYPE_CODE = PRODUCT.PRODUCT_TYPE_CODE)
and
(PRODUCT.PRODUCT_NUMBER = PRODUCT_MULTILINGUAL.PRODUCT_NUMBER

If you test only Product name, you see that the resulting query uses only Product
Multilingual, which is the table that was required. This is the effect of minimized
SQL.
select
PRODUCT_MULTILINGUAL.PRODUCT_NAME as Product_Name
from
gosl_82..gosl.PRODUCT_MULTILINGUAL PRODUCT_MULTILINGUAL
where
(PRODUCT_MULTILINGUAL."LANGUAGE" - N’EN")

Example: When Minimized SQL Is Important

If you are modeling a normalized data source, you may be more concerned about
minimized SQL because it will reduce the number of tables used in some requests

Chapter 1. Guidelines for Modeling Metadata 13

and perform better. In this case, it would be best to create relationships and
determinants between the data source query subjects and then create model query
subjects that do not have relationships.

There is a common misconception that if you do not have relationships between
objects, you cannot create star schema groups. This is not the case. Select the
model query subjects to include in the group and use the Star Schema Grouping
wizard. Or you can create shortcuts and move them to a new namespace. There is
no need to have shortcuts to the relationships; this feature is purely visual in the
diagram. The effect on query generation and presentation in the studios is the
same.

Example: When Minimized SQL Is Not as Important as Predictable
Queries

There may be some elements in a data source that you need to encapsulate to
ensure that they behave as if they were one data object. An example might be a
security table that must always be joined to a fact. In the Great Outdoors Sales
model, Order Header and Order Details are a set of tables that together represent a
fact and you would always want them to be queried together. For an example, see
“Where Should You Create Relationships and Determinants?” on page 11.

What Is Metadata Caching?
IBM Cognos Framework Manager stores the metadata that is imported from the
data source. However depending on governor settings and certain actions you take
in the model, this metadata might not be used when preparing a query.

If you enable the Allow enhanced model portability at run time governor,
Framework Manager always queries the data source for information about the
metadata before preparing a query. If you have not enabled this governor, in most
cases Framework Manager accesses the metadata that has been stored in the model
instead of querying the data source. The main exceptions are:
v The SQL in a data source query subject has been modified. This includes the use

of macros.
v A calculation or filter has been added to a data source query subject.

Note: The generated metadata queries are well supported by most relational
database management system vendors and should not have a noticeable impact on
most reporting applications.

Query Subjects vs. Dimensions
Query subjects and dimensions serve separate purposes. The query subject is used
to generate relational queries and may be created using star schema rules, while
the dimension is used for dimensional modeling of relational sources, which
introduces OLAP behavior. Because query subjects are the foundation of
dimensions, a key success criterion for any dimensional model is a sound relational
model.

A dimensional model is required only if you want to use IBM Cognos Analysis
Studio, to enable drilling up and down in reports, or to access member functions
in the studios. For many applications, there is no need for OLAP functionality. For
example, your application is primarily for ad hoc query or reporting with no
requirement for drilling up and down. Or you are maintaining an IBM Cognos
ReportNet® model. In these cases, you may choose to publish packages based on
query subjects alone.

14 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Determinants for query subjects are not the same as levels and hierarchies for
regular dimensions but they can be closely related to a single hierarchy. If you are
planning to use your query subjects as the foundation for dimensions, you should
consider the structure of the hierarchies you expect to create and ensure that you
have created determinants that will support correct results when aggregating.
Ensure that you have the following:
v The query subject should have a determinant specified for each level of the

hierarchy in the regular dimension.
v The determinants should be specified in the same order as the levels in the

regular dimension.
v If you expect to have multiple hierarchies that aggregate differently, you may

need to consider creating an additional query subject with different determinants
as the source for the other hierarchy.

By creating a complete relational model that delivers correct results and good
performance, you will have a strong foundation for developing a dimensional
model. In addition, by ensuring that a layer of model objects, either query subjects
or dimensions, exists between the data source and the objects exposed to the
studios, you are better able to shield your users from change.

Model Objects vs. Shortcuts
The key difference between model objects and shortcuts is that model objects give
you the freedom to include or exclude items and to rename them. You may choose
to use model objects instead of shortcuts if you need to limit the query items
included or to change the names of items.

Shortcuts are less flexible from a presentation perspective than model objects, but
they require much less maintenance because they are automatically updated when
the target object is updated. If maintenance is a key concern and there is no need
to customize the appearance of the query subject, use shortcuts.

IBM Cognos Framework Manager has two types of shortcuts:
v regular shortcuts, which are a simple reference to the target object.
v alias shortcuts, which behave as if they were a copy of the original object with

completely independent behavior. Alias shortcuts are available only for query
subjects and dimensions.

Regular shortcuts are typically used as conformed dimensions with star schema
groups, creating multiple references with the exact same name and appearance in
multiple places. In the example below, the shortcuts created for Products and
Order Time behave as references. If a query is written that brings Products from
both Product Forecast and Sales Target, the query uses the definition of Products
based on the original and this definition appears only once in the query.

Chapter 1. Guidelines for Modeling Metadata 15

Alias shortcuts are typically used in role-playing dimensions or shared tables.
Because there is already an example in this document for role-playing dimensions,
we will look at the case of shared tables. In this example, Sales Staff and Sales
Branch can be treated as different hierarchies. From our knowledge of the data, we
know that because staff can move between branches, we need to be able to report
orders against Sales Branch and Sales Staff independently as well as together. To
achieve this, we need to create an alias to Sales Branch that can be used as a level
in the Sales Staff hierarchy.

With the new alias shortcut in place, it is possible to create queries that require
orders by sales branch and orders by sales staff with their current branch
information simultaneously.

When you open a model from a previous release, the Shortcut Processing
governor is set to Automatic. When Automatic is used, shortcuts work the same as
in previous releases, that is, a shortcut that exists in the same folder as its target
behaves as an alias, or independent instance, whereas a shortcut existing elsewhere
in the model behaves as a reference to the original. To take advantage of the Treat
As property, it is recommended that you verify the model and, when repairing,
change the governor to Explicit. The repair operation changes all shortcuts to the
correct value from the Treat As property based on the rules followed by the

16 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Automatic setting, this means that there should be no change in behavior of your
model unless you choose to make one or more changes to the Treat As properties
of your shortcuts.

When you create a new model, the Shortcut Processing governor is always set to
Explicit.

When the governor is set to Explicit, the shortcut behavior is taken from the Treat
As property and you have complete control over how shortcuts behave without
being concerned about where in the model they are located.

Folders vs. Namespaces

The most important thing to know about namespaces is that once you have begun
authoring reports, any changes you make to the names of published namespaces
will impact your IBM Cognos content. This is because changing the name of the
namespace changes the IDs of the objects published in the metadata. Because the
namespace is used as part of the object ID in IBM Cognos Framework Manager,
each namespace must have a unique name in the model. Each object in a
namespace must also have a unique name. Part of the strategy of star schema
groups is placing shortcuts into a separate namespace, which automatically creates
a unique ID for each object in the namespace. For relational databases, this allows
us to use the same name for shortcuts to conformed dimensions in different star
schema groups.

The next time you try to run a query, report, or analysis against the updated
model, you get an error. If you need to rename the namespace that you have
published, use Analyze Publish Impact to determine which reports are impacted.

Folders are much simpler than namespaces. They are purely for organizational
purposes and do not impact object IDs or your content. You can create folders to
organize objects by subject or functional area. This makes it easier for you to locate
metadata, particularly in large projects.

The main drawback of folders is that they require unique names for all query
subjects, dimensions, and shortcuts. Therefore, they are not ideal for containing
shared objects.

Setting the Order of Operations for Model Calculations
In some cases, usually for ratio-related calculations, it is useful to perform the
aggregation on the calculation terms prior to the mathematical operation.

For example, the following Order details fact contains information about each
order:

Chapter 1. Guidelines for Modeling Metadata 17

Margin is a calculation that computes the ratio of profit:
Margin = (Revenue - Product cost) / Revenue

If we run a query to show Revenue, Product cost, and Margin for each product
using the Order details fact, we get the following results:

Product number Revenue Product cost Margin

1 $23,057,141 $11,292,005 61038%

2 $11,333,518 $6,607,904 49606%

Notice that the value for Margin seems to be wrong. This is because of the order of
operations used in computing Margin. Margin is computed as:
Margin = sum((Revenue - Product cost) / Revenue)

The aggregation took place after the mathematical operation and, in this case, it
produces undesired results.

To produce the desired values for Margin, we need to aggregate before the
mathematical operation:
Margin = (sum(Revenue) - sum(Product cost)) / sum(Revenue)

This produces the following results:

Product number Revenue Product cost Margin

1 $23,057.141 $11,292,005 51.03%

2 $11,333,518 $6,607,904 41.70%

You can accomplish this in IBM Cognos Framework Manager by creating a
stand-alone calculation for Margin and setting its Regular Aggregate property to
Calculated. Each query item in the calculation's expression is aggregated as
specified in its Regular Aggregate property. The Regular Aggregate properties for
Revenue and Product cost are set to Sum and thus, when computing the
calculation, sum is used to aggregate those terms.

18 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Note: The calculated aggregation type is not supported for calculations that are
embedded within query subjects. It is supported only for stand-alone calculations
and for calculations that are embedded within measure dimensions and are based
on measures from the same measure dimension.

For example, consider the Margin calculation that is embedded in the Sales
measure dimension:

In this example, Margin is based on the measures Product cost and Revenue that
are within the same measure dimension, Sales. If the Regular Aggregate property
for Margin is set to Calculated, it is rolled up as:
Margin = sum(Revenue - Product cost) / sum(Revenue)

If Margin is based on the source query items of the measures Product cost and
Revenue (Sales (model).Product cost, Sales (model).Revenue), the calculated
aggregation is not supported and the aggregation behaves as automatic. In this
case, Margin is rolled up as:
Margin = sum(Revenue - Product cost) / Revenue)

For more information about modifying how query items are aggregated, see the
IBM Cognos Framework Manager User Guide.

Impact of Model Size
The size of your model may affect the efficiency of the Framework Manager
application.

Very large models will cause extended processing times and, in extreme cases,
out-of-memory conditions. Actions such as Analyze Publish Impact, Find Report
Dependencies, Publish Packages and Run Model Advisor perform optimally on
models under 50 megabytes.

Dimensional Modeling Concepts
Regular and measure dimensions are used to enable an OLAP presentation of
metadata, drilling up and down, and a variety of OLAP functions. You must use
star schema groups (one fact with multiple dimensions) if you want to use IBM
Cognos Analysis Studio with a relational data source.

When building your model, it is recommended that model regular dimensions and
model measure dimensions be created based on a relational model in which star
schema concepts have been applied.

While you can convert data source query subjects to data source dimensions, data
source dimensions have limited functionality in comparison to query subjects or
model dimensions, and they are not recommended for general use.

Regular Dimensions
Regular dimensions represent descriptive data that provides context for data
modeled in measure dimensions. A regular dimension is broken into groups of
information called levels. In turn, the various levels can be organized into
hierarchies. For example, a product dimension can contain the levels Product Line,

Chapter 1. Guidelines for Modeling Metadata 19

Product Type, and Product organized in a single hierarchy called Product. Another
example is a time dimension that has the levels Year, Quarter, Month, Week, and
Day, organized into two hierarchies. The one hierarchy YQMD contains the levels
Year, Quarter, Month, and Day, and the other hierarchy YWD contains the levels
Year, Week, and Day.

The simplest definition of a level consists of a business key and a caption, each of
these referring to one query item. An instance (or row) of a level is defined as a
member of that level. It is identified by a member unique name, which contains
the values of the business keys of the current and higher levels. For example,
[gosales].[Products].[ProductsOrg].[Product]->[All Products].[1].[1].[2]
identifies a member that is on the fourth level, Product, of the hierarchy
ProductsOrg of the dimension [Products] that is in the namespace [gosales]. The
caption for this product is TrailChef Canteen, which is the name shown in the
metadata tree and on the report.

The level can be defined as unique if the business key of the level is sufficient to
identify each set of data for a level. In the Great Outdoors Sales model, the
members of the Product level do not require the definition of Product type because
there are no product numbers assigned to many different product types. A level
that is not defined as unique is similar to a determinant that uses multiple-part
keys because keys from higher levels of granularity are required. See “Using
Determinants with Multiple-Part Keys” on page 5. If members within ancestor
members are not unique but the level is defined as unique, data for the
non-unique members is reported as a single member. For example, if City is
defined as unique and identified by name, data for London, England and London,
Canada will be combined.

A regular dimension may also have multiple hierarchies; however, you can use
only one hierarchy at a time in a query. For example, you cannot use one hierarchy
in the rows of a crosstab report and another hierarchy from the same dimension in
the columns. If you need both hierarchies in the same report, you must create two
dimensions, one for each hierarchy.

Measure Dimensions
Measure dimensions represent the quantitative data described by regular
dimensions. Known by many terms in various OLAP products, a measure
dimension is simply the object that contains the fact data. Measure dimensions
differ from fact query subjects because they do not include the foreign keys used to
join a fact query subject to a dimensional query subject. This is because the
measure dimension is not meant to be joined as if it were a relational data object.
For query generation purposes, a measure dimension derives its relationship to a
regular dimension through the underlying query subjects. Similarly the
relationship to other measure dimensions is through regular dimensions that are
based on query subjects built to behave as conformed dimensions. To enable
multiple-fact, multiple-grain querying, you must have query subjects and
determinants created appropriately before you build regular dimensions and
measure dimensions.

Scope Relationships
Scope relationships exist only between measure dimensions and regular
dimensions to define the level at which the measures are available for reporting.
They are not the same as joins and do not impact the Where clause. There are no
conditions or criteria set in a scope relationship to govern how a query is formed,
it specifies only if a dimension can be queried with a specified fact. The absence of

20 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

a scope relationship may result in an error at runtime or cause fact data to be
rolled up at a high level than expected given the other items in the report.

If you set the scope relationship for the measure dimension, the same settings
apply to all measures in the measure dimension. If data is reported at a different
level for the measures in the measure dimension, you can set scope on a measure.
You can specify the lowest level that the data can be reported on.

In this example, the Sales Target measure dimension has only one measure that is
in scope to the Order Month level on the Order Time Dimension and to the
Product level of the Product Dimension. This means that if your users try to drill
beyond the month level, they will see repeated data.

Building the Relational Model
Dimensional modeling of relational data sources is available in IBM Cognos
Framework Manager, however it depends on the existence of a sound relational
model.

IBM Cognos ReportNet provided some dimensional capabilities to enable
multiple-fact querying and to prevent double-counting. Subsequent to IBM Cognos
ReportNet, the IBM Cognos software has features designed explicitly for
dimensional representation of metadata and OLAP capability with relational data
sources. The concepts applied to relational modeling in IBM Cognos ReportNet
have been preserved with a few changes that are documented in the Framework
Manager User Guide.

When you create a new Framework Manager model, you will follow a common set
of steps to define query generation even if you do not intend to use dimensional
modeling capabilities. You must dimensionally model a relational data source
when you want to use it in IBM Cognos Analysis Studio, to enable drilling up and
down in reports, or to access member functions in the studios.

Defining the Relational Modeling Foundation
A model is the set of related objects required for one or more related reporting
applications. A sound relational model is the foundation for a dimensional model.

When you define the relational modeling foundation, consider the following:
v Importing the metadata. For information about importing, see the IBM Cognos

Framework Manager User Guide.
v “Verifying Imported Metadata” on page 22.
v “Resolving Ambiguous Relationships” on page 22.

Chapter 1. Guidelines for Modeling Metadata 21

v Simplifying the relational model using star schema concepts by analyzing
cardinality for facts and dimensions and by deciding where to put relationships
and determinants “Model Design Considerations” on page 11.

v Add data security, if required. For information about data security, see the
Framework Manager User Guide.

Then you can define the dimensional representation of the model if it is required,
and organize the model for presentation.

Verifying Imported Metadata
After importing metadata, you must check the imported metadata.

Verify these areas:
v relationships and cardinality
v determinants
v the Usage property for query items
v the Regular Aggregate property for query items

Relationships and cardinality are discussed here. For information on the Usage and
Regular Aggregate properties, see the Framework Manager User Guide.

Analyzing the Cardinality for Facts and Dimensions:

The cardinality of a relationship defines the number of rows of one table that is
related to the rows of another table based on a particular set (or join) of keys.
Cardinality is used by IBM Cognos software to infer which query subjects behave
as facts or dimensions. The result is that IBM Cognos software can automatically
resolve a common form of loop join that is caused by star schema data when you
have multiple fact tables joined to a common set of dimension tables.

To ensure predictable queries, it is important to understand how cardinality is used
and to correctly apply it in your model. It is recommended that you examine the
underlying data source schema and address areas where cardinality incorrectly
identifies facts or dimensions that could cause unpredictable query results. The
Model Advisor feature in Framework Manager can be used to help you
understand how the cardinality is interpreted.

For more information, see “Cardinality” on page 1.

Resolving Ambiguous Relationships
Ambiguous relationships occur when the data represented by a query subject or
dimension can be viewed in more than one context or role, or can be joined in
more than one way.

The most common ambiguous relationships are:
v “Role-Playing Dimensions” on page 23
v “Loop Joins” on page 26
v “Reflexive and Recursive Relationships” on page 27

You can use the Model Advisor to highlight relationships that may cause issues
for query generation and resolve them in one of the ways described below. Note
that there are other ways to resolve issues than the ones discussed here. The main
goal is to enable clear query paths.

22 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Role-Playing Dimensions:

A table with multiple valid relationships between itself and another table is known
as a role-playing dimension. This is most commonly seen in dimensions such as
Time and Customer.

For example, the Sales fact has multiple relationships to the Time query subject on
the keys Order Day, Ship Day, and Close Day.

Remove the relationships for the imported objects, fact query subjects, and
role-playing dimensional query subjects. Create a model query subject for each
role. Consider excluding unneeded query items to reduce the length of the
metadata tree displayed to your users. Ensure that a single appropriate relationship
exists between each model query subject and the fact query subject. Note: This will
override the Minimized SQL setting but given a single table representation of the
Time dimension, it is not considered to be problematic in this case.

Chapter 1. Guidelines for Modeling Metadata 23

Decide how to use these roles with other facts that do not share the same concepts.
For example, Product forecast fact has only one time key. You need to know your
data and business to determine if all or any of the roles created for Time are
applicable to Product forecast fact.

In this example, you can do one of the following:
v Create an additional query subject to be the conformed time dimension and

name it clearly as a conformed dimension.
Pick the most common role that you will use. You can then ensure that this
version is joined to all facts requiring it. In this example, Close Day has been
chosen.

24 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

v You can treat Ship Day, Order Day, and Close Day as interchangeable time query
subjects with Product forecast fact.
In this case, you must create joins between each of the role-playing dimensions
and Product forecast fact. You can use only one time dimension at a time when
querying the Product forecast fact or your report may contain no data. For
example, Month_key=Ship Month Key (200401) and Month key=Close Month
Key (200312).

Chapter 1. Guidelines for Modeling Metadata 25

If modeling dimensionally, use each model query subject as the source for a
regular dimension, and name the dimension and hierarchies appropriately. Ensure
that there is a corresponding scope relationship specific to each role.

Loop Joins:

Loop joins in the model are typically a source of unpredictable behavior. This does
not include star schema loop joins.

Note: When cardinality clearly identifies facts and dimensions, IBM Cognos
software can automatically resolve loop joins that are caused by star schema data
when you have multiple fact tables joined to a common set of dimension tables.

In the case of loop joins, ambiguously defined query subjects are the primary sign
of problems. When query subjects are ambiguously defined and are part of a loop
join, the joins used in a given query are decided based on a number of factors,
such as the location of relationships, the number of segments in join paths, and, if
all else is equal, the alphabetically first join path. This creates confusion for your
users and we recommend that you model to clearly identify the join paths.

Sales Staff and Branch provide a good example of a loop join with ambiguously
defined query subjects.

In this example, it is possible to join Branch directly to Order or through Sales Staff
to Order. The main problem is that when Branch and Order are together, you get a
different result than when the join path is Branch to Sales Staff to Order. This is
because employees can move between branches so employees who moved during
the year are rolled up to their current branch even if many of the sales they made
are attributable to their previous branch. Because of the way this is modeled, there

26 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

is no guarantee which join path will be chosen and it is likely to vary depending
on which items are selected in the query.

Reflexive and Recursive Relationships:

Reflexive and recursive relationships imply two or more levels of granularity. IBM
Cognos Framework Manager imports reflexive relationships but does not use them
when executing queries. Reflexive relationships, which are self-joins, are shown in
the model for the purpose of representation only.

To create a functioning reflexive relationship, you can either create an alias
shortcut, a copy of the data source query subject, or a model query subject. You
then create a relationship between the original query subject and the new one.
Using a model query subject tends to be the better option for flexibility because
you can specify which query items are included in the query subject. Shortcuts are
the better solution from a maintenance perspective. For more information, see
“Model Objects vs. Shortcuts” on page 15.

For example, the Sales Staff query subject has a recursive relationship between
Sales_Staff_Code and Manager_Code.

Chapter 1. Guidelines for Modeling Metadata 27

Create a model query subject to represent Manager. Create a relationship with a
1..1 to 1..n between Manager and Sales Staff. Then merge into a new model
query subject.

For a simple two-level structure using a model query subject for Manager that is
based on Sales Staff, the model looks like this:

For a recursive, balanced hierarchy, repeat this for each additional level in the
hierarchy.

For a deep recursive or unbalanced hierarchy, we recommend that the hierarchy be
flattened in the data source and that you model the flattened hierarchy in one
regular dimension.

Simplifying the Relational Model
You can simplify the model by applying star schema concepts to the dimensional
data and the fact data.

Modeling Query Subjects That Represent Descriptive Data:

IBM Cognos dimensional modeling requires that you apply star schema principles
to the logical layers of the model.

28 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Normalized or snowflaked data sources often have several tables that describe a
single business concept. For example, a normalized representation of Product may
include four tables related by 1..n relationships. Each Product Line has one or
more Product Types. Each Product Type has one or more Products. Products have
names and descriptions in multiple languages so they exist in the Product
Multilingual lookup table.

One way to simplify the model is to create one model query subject for each
descriptive business concept. Your users may not know the relationship between
the individual query subjects so it is helpful to group them together; in addition,
having to expand each model object and select a query item requires more effort.

The next step for analysis is to create a regular dimension with a level for each
query subject.

Modeling Fact Data:

Data sources often have master-detail tables that contain facts. For example, when
the Order header and Order details tables are used to insert and update data, the
master-detail structure is beneficial. When these tables are used for reporting and
analysis, you may choose to combine them into one logical business concept to
simplify the model. Or you may choose to insert a dimension between them, such
as Returned Items. Which solution you choose depends on your requirements.

Chapter 1. Guidelines for Modeling Metadata 29

To simplify the model in this example, apply star schema concepts to create one
model query subject that combines the foreign keys of both Order header and
Order details and includes all measures at the Order details level. This query
subject should be joined to the same query subjects that Order header and Order
details were joined to. You may choose to remove the original relationships from
the two data source query subjects except for the relationship that defines the join
between them. For a discussion of the pros and cons of creating relationships to
model query subjects, see the examples in “What Is Minimized SQL?” on page 12.

In the example below, Order header and Order details have been combined into a
new model query subject named Sales. This query subject has been joined to
Product, Time, and Order method.

The next step for analysis is to create a measure dimension based on the model
query subject.

Defining the Dimensional Representation of the Model
Dimensional modeling of relational data sources is a capability made available by
IBM Cognos Framework Manager. You can model dimensions with hierarchies and
levels and have facts with multiple measures. You can then relate the dimensions
to the measures by setting scope in the model.

You must dimensionally model a relational data source when you want to use it in
IBM Cognos Analysis Studio, enable drilling up and down in reports, or access
member functions in the studios.

You can use the relational model as the foundation layer and then define the
dimensional representation of the model.

Then you can organize the model for presentation. See “Organizing the Model” on
page 34.

Creating Regular Dimensions

A regular dimension contains descriptive and business key information and
organizes the information in a hierarchy, from the highest level of granularity to

30 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

the lowest. It usually has multiple levels and each level requires a key and a
caption. If you do not have a single key for your level, it is recommended that you
create one in a calculation.

Model regular dimensions are based on data source or model query subjects that
are already defined in the model. You must define a business key and a string type
caption for each level. When you verify the model, the absence of business keys
and caption information is detected. Instead of joining model regular dimensions
to measure dimensions, create joins on the underlying query subjects and create a
scope relationship between the regular dimension and the measure dimension.

Modeling Dimensions with Multiple Hierarchies
Multiple hierarchies occur when different structural views can be applied to the
same data. Depending on the nature of the hierarchies and the required reports,
you may need to evaluate the modeling technique applied to a particular case.

For example, sales staff can be viewed by manager or geography. In the IBM
Cognos studios, these hierarchies are separate but interchangeable logical
structures, which are bound to the same underlying query.

Here is sales staff as a single dimension with two hierarchies:

The hierarchies are defined in Framework Manager as follows.

Chapter 1. Guidelines for Modeling Metadata 31

You can specify multiple hierarchies on regular dimensions in Framework
Manager. Multiple hierarchies for a regular dimension behave as views of the same
query. However, you can use only one hierarchy at a time in a query. For example,
you cannot use one hierarchy in the rows of a crosstab report and another
hierarchy from the same dimension in the columns. If you need both hierarchies in
the same report, you must create two dimensions, one for each hierarchy. In cases
where you have multiple hierarchies with significantly different levels or
aggregation, you may choose to model so that a separate query subject with
appropriate determinants exists as the foundation for that hierarchy. The only
requirement is that any query subject used as the basis for a hierarchy must have a
join defined to the query subject that provides the fact data.

Here are separate dimensions for each hierarchy.

32 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Use this approach if dramatically different sets of columns are relevant for each
hierarchy and it is more intuitive for your users to model the hierarchies as
separate dimensions with separate and simpler queries.

Creating Measure Dimensions

A measure dimension is a collection of facts. You can create a measure dimension
for one or more query subjects that have a valid relationship between them.

Model measure dimensions should be composed of only quantitative items.
Because, by design, model measure dimensions do not contain keys on which to
join, it is not possible to create joins to model measure dimensions. Instead of
joining model measure dimensions to regular dimensions, create joins on the
underlying query subjects. Then either manually create a scope relationship
between them or detect scope if both dimensions are in the same namespace.

Create Scope Relationships

Scope relationships exist only between measure dimensions and regular
dimensions to define the level at which the measures are available for reporting.
They are not the same as joins and do not impact the Where clause. There are no
conditions or criteria set in a scope relationship to govern how a query is formed,
it specifies only if a dimension can be queried with a specified fact. The absence of
a scope relationship results in an error at runtime.

If you set the scope relationship for the measure dimension, the same settings
apply to all measures in the measure dimension. If data is reported at a different
level for the measures in the measure dimension, you can set scope on a measure.
You can specify the lowest level that the data can be reported on.

When you create a measure dimension, IBM Cognos Framework Manager creates a
scope relationship between the measure dimension and each existing regular
dimension. Framework Manager looks for a join path between the measure
dimension and the regular dimensions, starting with the lowest level of detail. If
there are many join paths available, the scope relationship that Framework
Manager creates may not be the one that you intended. In this case, you must edit
the scope relationship.

Chapter 1. Guidelines for Modeling Metadata 33

Organizing the Model
After working in the relational modeling foundation and creating a dimensional
representation, you can organize the model.
v Keep the metadata from the data source in a separate namespace or folder.
v Create one or more optional namespaces or folders for resolving complexities

that affect querying using query subjects.
To use IBM Cognos Analysis Studio, there must be a namespace or folder in the
model that represents the metadata with dimensional objects.

v Create one or more namespaces or folders for the augmented business view of
the metadata that contains shortcuts to dimensions or query subjects.
Use business concepts to model the business view. One model can contain many
business views, each suited to a different user group. You publish the business
views.

v Create “Star Schema Groups.”
v Apply object security, if required.
v Create packages and publish the metadata.

For information about the topics not covered here, see the Framework Manager
User Guide.

Star Schema Groups
The concept of the conformed dimension is not isolated to dimensional modeling,
it applies equally to query subjects.

Use the Star Schema Grouping wizard to quickly create groups of shortcuts that
will provide context for your users regarding which objects belong together. This
makes the model more intuitive for your users. Star schema groups can also
facilitate multiple-fact reporting by allowing the repetition of shared dimensions in
different groups. This helps your users to see what different groups have in
common and how they can do cross-functional, or multiple-fact, reporting. For
more information, see “Multiple-fact, Multiple-grain Queries” on page 8.

Star schema groups also provide context for queries with multiple join paths. By
creating star schema groups in the business view of the model, you can clarify
which join path to select when many are available. This is particularly useful for
fact-less queries.

Multiple Conformed Star Schemas or Fact-less Queries:

You will likely see dimensional query subjects that are joined to more than one fact
query subject. Join ambiguity is an issue when you report using items from
multiple dimensions or dimensional query subjects without including any items
from the measure dimension or fact query subject. This is called a fact-less query.

For example, Product and Time dimensions are related to the Product forecast and
Sales facts.

34 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Using these relationships, how do you write a report that uses only items from
Product and Time? The business question could be which products were forecasted
for sale in 2005 or which products were actually sold in 2005. Although this query
involves only Product and Time, these dimensions are related through multiple
facts. There is no way to guess which business question is being asked. You must
set the context for the fact-less query.

In this example, we recommend that you create two namespaces, one containing
shortcuts to Product, Time, and Product forecast, and another containing Product,
Time, and Sales.

Chapter 1. Guidelines for Modeling Metadata 35

When you do this for all star schemas, you resolve join ambiguity by placing
shortcuts to the fact and all dimensions in a single namespace. The shortcuts for
conformed dimensions in each namespace are identical and are references to the
original object. Note: The exact same rule is applied to regular dimensions and
measure dimensions.

With a namespace for each star schema, it is now clear to your users which items
to use. To create a report on which products were actually sold in 2005, they use
Product and Year from the Sales Namespace. The only relationship that is relevant
in this context is the relationship between Product, Time, and Sales, and it is used
to return the data.

36 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Chapter 2. The SQL Generated by IBM Cognos Software

The SQL generated by IBM Cognos software is often misunderstood. This
document explains the SQL that results in common situations.

Note: The SQL examples shown in this document were edited for length and are
used to highlight specific examples. These examples use the version 8.2 sample
model.

To access the IBM Cognos Guidelines for Modeling Metadata documentation in a
different language, go to installation_location\c10\webcontent\documentation and
open the folder for the language you want. Then open ug_best.pdf.

Understanding Dimensional Queries
Dimensional queries are designed to enable multiple-fact querying.

The basic goals of multiple-fact querying are:
v Preserve data when fact data does not perfectly align across common

dimensions, such as when there are more rows in the facts than in the
dimensions.

v Prevent double-counting when fact data exists at different levels of granularity
by ensuring that each fact is represented in a single query with appropriate
grouping. Determinants may need to be created for the underlying query
subjects in some cases.

Single Fact Query
A query on a star schema group results in a single fact query.

In this example, Sales is the focus of any query written. The dimensions provide
attributes and descriptions to make the data in Sales more meaningful. All
relationships between dimensions and the fact are 1-n.

© Copyright IBM Corp. 2005, 2011 37

When you filter on the month and product, the result is as follows.

38 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Multiple-fact, Multiple-grain Query on Conformed Dimensions
A query on multiple facts and conformed dimensions respects the cardinality
between each fact table and its dimensions and writes SQL to return all the rows
from each fact table.

For example, Sales and Product Forecast are both facts.

Note that this is a simplified representation and not an example of how this would
appear in a model built using IBM Cognos modeling recommendations.

The Result

Individual queries on Sales and Product Forecast by Month and Product yield the
following results. The data in Sales is actually stored at the day level.

Chapter 2. The SQL Generated by IBM Cognos Software 39

A query on Sales and Product Forecast respects the cardinality between each fact
table and its dimensions and writes SQL to return all the rows from each fact table.
The fact tables are matched on their common keys, month and product, and, where
possible, are aggregated to the lowest common level of granularity. In this case,
days are rolled up to months. Nulls are often returned for this type of query
because a combination of dimensional elements in one fact table may not exist in
the other.

Note that in February 2004, Course Pro Umbrellas were in the forecast but there
were no actual sales. The data in Sales and Product Forecast exist at different levels
of granularity. The data in Sales is at the day level, and Product Forecast is at the
month level.

The SQL

The SQL generated by IBM Cognos software, known as a stitched query, is often
misunderstood. A stitched query uses multiple subqueries, one for each star,
brought together by a full outer join on the common keys. The goal is to preserve
all dimensional members occurring on either side of the query.

The following example was edited for length and is used as an example to capture
the main features of stitched queries.
select
coalesce(D2.MONTH_NAME,D3.MONTH_NAME) as MONTH_NAME,
coalesce(D2.PRODUCT_NAME,D3.PRODUCT_NAME) as PRODUCT_NAME,
D2.EXPECTED_VOLUME as EXPECTED_VOLUME,
D3.QUANTITY as QUANTITY
from (select TIME.MONTH_NAME as MONTH_NAME,
PRODUCT_LOOKUP.PRODUCT_NAME as PRODUCT_NAME,
XSUM(PRODUCT_FORECAST_FACT.EXPECTED_VOLUME for
TIME.CURRENT_YEAR,TIME.QUARTER_KEY,TIME.MONTH_KEY,
PRODUCT.PRODUCT_LINE_CODE, PRODUCT.PRODUCT_TYPE_CODE,
PRODUCT.PRODUCT_KEY) as EXPECTED_VOLUME
from
(select TIME.CURRENT_YEAR as CURRENT_YEAR,
TIME.QUARTER_KEY as QUARTER_KEY,
TIME.MONTH_KEY as MONTH_KEY,
XMIN(TIME.MONTH_NAME for TIME.CURRENT_YEAR,
TIME.QUARTER_KEY,TIME.MONTH_KEY) as MONTH_NAME
from TIME_DIMENSION TIME
group by TIME.MONTH_KEY) TIME
join PRODUCT_FORECAST_FACT PRODUCT_FORECAST_FACT
on (TIME.MONTH_KEY = PRODUCT_FORECAST_FACT.MONTH_KEY)
join PRODUCT PRODUCT on (PRODUCT.PRODUCT_KEY =
PRODUCT_FORECAST_FACT.PRODUCT_KEY)
where
(PRODUCT.PRODUCT_NAME in (’Aloe Relief’,’Course Pro
Umbrella’)) and
(TIME.MONTH_NAME in (’April 2004’,’February 2004’,’February

40 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

2006’))
group by
TIME.MONTH_NAME,
PRODUCT_LOOKUP.PRODUCT_NAME
) D2
full outer join
(select TIME.MONTH_NAME as MONTH_NAME,
PRODUCT_LOOKUP.PRODUCT_NAME as PRODUCT_NAME,
XSUM(SALES_FACT.QUANTITY for TIME.CURRENT_YEAR,
TIME.QUARTER_KEY, TIME.MONTH_KEY,
PRODUCT.PRODUCT_LINE_CODE, PRODUCT.PRODUCT_TYPE_CODE,
PRODUCT.PRODUCT_KEY) as QUANTITY
from
select TIME.DAY_KEY,TIME.MONTH_KEY,TIME.QUARTER_KEY,
TIME.CURRENT_YEAR,TIME.MONTH_EN as MONTH_NAME
from TIME_DIMENSION TIME) TIME
join SALES_FACT SALES_FACT
on (TIME.DAY_KEY = SALES_FACT.ORDER_DAY_KEY)
join PRODUCT PRODUCT on (PRODUCT.PRODUCT_KEY = SALES_FACT.PRODUCT_KEY)
where
PRODUCT.PRODUCT_NAME in (’Aloe Relief’,’Course Pro Umbrella’))
and (TIME.MONTH_NAME in (’April 2004’,’February 2004’,’February
2006’))
group by
TIME.MONTH_NAME,
PRODUCT.PRODUCT_NAME
) D3
on ((D2.MONTH_NAME = D3.MONTH_NAME) and
(D2.PRODUCT_NAME = D3.PRODUCT_NAME))

What Is the Coalesce Statement?

A coalesce statement is simply an efficient means of dealing with query items
from conformed dimensions. It is used to accept the first non-null value returned
from either query subject. This statement allows a full list of keys with no
repetitions when doing a full outer join.

Why Is There a Full Outer Join?

A full outer join is necessary to ensure that all the data from each fact table is
retrieved. An inner join gives results only if an item in inventory was sold. A right
outer join gives all the sales where the items were in inventory. A left outer join
gives all the items in inventory that had sales. A full outer join is the only way to
learn what was in inventory and what was sold.

Modeling 1-n Relationships as 1-1 Relationships
If a 1-n relationship exists in the data but is modeled as a 1-1 relationship, SQL
traps cannot be avoided because the information provided by the metadata to the
IBM Cognos software is insufficient.

The most common problems that arise if 1-n relationships are modeled as 1-1 are
the following:
v Double-counting for multiple-grain queries is not automatically prevented.

IBM Cognos software cannot detect facts and then generate a stitched query to
compensate for double-counting, which can occur when dealing with
hierarchical relationships and different levels of granularity across conformed
dimensions.

v Multiple-fact queries are not automatically detected.

Chapter 2. The SQL Generated by IBM Cognos Software 41

IBM Cognos software will not have sufficient information to detect a
multiple-fact query. For multiple-fact queries, an inner join is performed and the
loop join is eliminated by dropping the last evaluated join. Dropping a join is
likely to lead to incorrect or unpredictable results depending on the dimensions
and facts included in the query.

If the cardinality were modified to use only 1-1 relationships between query
subjects or dimensions, the result of a query on Product Forecast and Sales with
Time or Time and Product generates a single Select statement that drops one join
to prevent a circular reference.

The example below shows that the results of this query are incorrect when
compared with the results of individual queries against Sales or Product Forecast.

The results of individual queries are as follows.

When you combine these queries into a single query, the results are as follows.

The SQL

Because a circular join path was detected in the model, the generated SQL did not
include one of the relationships that was not necessary to complete the join path.
In this example, the relationship between Time and Product Forecast was dropped.

42 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

A circular join path rarely results in a query that produces useful results.
select
TIME_.MONTH_NAME as MONTH_NAME,
PRODUCT_LOOKUP.PRODUCT_NAME as PRODUCT_NAME,
XSUM(SALES_FACT.QUANTITY for
TIME_.CURRENT_YEAR, TIME_.QUARTER_KEY, TIME_.MONTH_KEY,
PRODUCT.PRODUCT_LINE_CODE, PRODUCT.PRODUCT_TYPE_CODE,
PRODUCT.PRODUCT_KEY) as QUANTITY,
XSUM(PRODUCT_FORECAST_FACT.EXPECTED_VOLUME for TIME_.CURRENT_YEAR,
TIME_.QUARTER_KEY, TIME_.MONTH_KEY, PRODUCT.PRODUCT_LINE_CODE,
PRODUCT.PRODUCT_TYPE_CODE, PRODUCT.PRODUCT_KEY) as EXPECTED_VOLUME
from
(select TIME.DAY_KEY,TIME.MONTH_KEY, TIME.QUARTER_KEY,
TIME.CURRENT_YEAR,TIME.MONTH_EN as MONTH_NAME
from TIME_DIMENSION TIME) TIME
join
SALES_FACT on (TIME_.DAY_KEY = SALES_FACT.ORDER_DAY_KEY)
join
PRODUCT_FORECAST_FACT on (TIME_.MONTH_KEY =
PRODUCT_FORECAST_FACT.MONTH_KEY)
join
PRODUCT (PRODUCT.PRODUCT_KEY = PRODUCT_FORECAST_FACT.PRODUCT_KEY)
where
(PRODUCT.PRODUCT_NAME in (’Aloe Relief’,’Course Pro Umbrella’))
and
(TIME_.MONTH_NAME in (’April 2004’,’February 2004’,’February 2006’))
group by
TIME_.MONTH_NAME, PRODUCT.PRODUCT_NAME

Multiple-fact, Multiple-grain Query on Non-Conformed
Dimensions

If a non-conformed dimension is added to the query, the nature of the result
returned by the stitched query is changed. It is no longer possible to aggregate
records to a lowest common level of granularity because one side of the query has
dimensionality that is not common to the other side of the query. The result
returned is really two correlated lists.

Chapter 2. The SQL Generated by IBM Cognos Software 43

The Result

The results of individual queries on the respective star schemas look like this.

44 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Querying the same items from both star schemas yields the following result.

In this result, the lower level of granularity for records from Sales results in more
records being returned for each month and product combination. There is now a
1-n relationship between the rows returned from Product Forecast and those
returned from Sales.

When you compare this to the result returned in the example of the multiple-fact,
multiple grain query on conformed dimensions, you can see that more records are
returned and that Expected Volume results are repeated across multiple Order
Methods. Adding Order Method to the query effectively changes the relationship
between Quantity data and Expected Volume data to a 1-n relationship. It is no
longer possible to relate a single value from Expected Volume to one value from
Quantity.

Grouping on the Month key demonstrates that the result in this example is based
on the same data set as the result in the multiple-fact, multiple-grain query but
with a greater degree of granularity.

Chapter 2. The SQL Generated by IBM Cognos Software 45

The SQL

The stitched SQL generated for this example is very similar to the SQL generated
in the multiple-fact, multiple-grain query. The main difference is the addition of
Order Method. Order Method is not a conformed dimension and affects only the
query against the Sales Fact table.
select
D2.QUANTITY as QUANTITY,
D3.EXPECTED_VOLUME as EXPECTED_VOLUME,
coalesce(D2.PRODUCT_NAME,D3.PRODUCT_NAME) as PRODUCT_NAME,
coalesce(D2.MONTH_NAME,D3.MONTH_NAME) as MONTH_NAME,
D2.ORDER_METHOD as ORDER_METHOD
from
(select
PRODUCT.PRODUCT_NAME as PRODUCT_NAME,
TIME.MONTH_NAME as MONTH_NAME,
ORDER_METHOD.ORDER_METHOD as ORDER_METHOD,
XSUM(SALES_FACT.QUANTITY for TIME.CURRENT_YEAR,TIME.QUARTER_KEY,
TIME.MONTH_KEY,PRODUCT.PRODUCT_LINE_CODE,PRODUCT.PRODUCT_TYPE_CODE,
PRODUCT.PRODUCT_KEY,ORDER_METHOD_DIMENSION.ORDER_METHOD_KEY) as
QUANTITY
from
PRODUCT_DIMENSION PRODUCT
join
SALES_FACT SALES_FACT
on (PRODUCT.PRODUCT_KEY = SALES_FACT.PRODUCT_KEY)
join
ORDER_METHOD_DIMENSION ORDER_METHOD
on (ORDER_METHOD.ORDER_METHOD_KEY = SALES_FACT.ORDER_METHOD_KEY)
join TIME_DIMENSION TIME
on (TIME.DAY_KEY = SALES_FACT.ORDER_DAY_KEY)
where
(PRODUCT.PRODUCT_NAME in (’Aloe Relief’,’Course Pro Umbrella’))
and
(TIME.MONTH_NAME in (’April 2004’,’February 2004’,’February 2006’))
group by
PRODUCT.PRODUCT_NAME,
TIME.MONTH_NAME,
ORDER_METHOD.ORDER_METHOD
) D2
full outer join
(select
PRODUCT.PRODUCT_NAME as PRODUCT_NAME,
TIME.MONTH_NAME as MONTH_NAME,
XSUM(PRODUCT_FORECAST_FACT.EXPECTED_VOLUME for TIME.CURRENT_YEAR,
TIME.QUARTER_KEY,TIME.MONTH_KEY,PRODUCT.PRODUCT_LINE_CODE,
PRODUCT.PRODUCT_TYPE_CODE,PRODUCT.PRODUCT_KEY) as EXPECTED_VOLUME
from
PRODUCT_DIMENSION PRODUCT
join
PRODUCT_FORECAST_FACT PRODUCT_FORECAST_FACT
on (PRODUCT.PRODUCT_KEY = PRODUCT_FORECAST_FACT.PRODUCT_KEY)
join
(select
TIME.CURRENT_YEAR as CURRENT_YEAR,
TIME.QUARTER_KEY as QUARTER_KEY,
TIME.MONTH_KEY as MONTH_KEY,
XMIN(TIME.MONTH_NAME for TIME.CURRENT_YEAR, TIME.QUARTER_KEY,
TIME.MONTH_KEY) as MONTH_NAME
from
TIME_DIMENSION TIME
group by
TIME.CURRENT_YEAR,
TIME.QUARTER_KEY,
TIME.MONTH_KEY
) TIME

46 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

on (TIME.MONTH_KEY = PRODUCT_FORECAST_FACT.MONTH_KEY)
where
(PRODUCT.PRODUCT_NAME in (’Aloe Relief’,’Course Pro Umbrella’))
and
(TIME.MONTH_NAME in (’April 2004’,’February 2004’,’February 2006’))
group by
PRODUCT.PRODUCT_NAME,
TIME.MONTH_NAME
) D3
on ((D2.PRODUCT_NAME = D3.PRODUCT_NAME) and
(D2.MONTH_NAME = D3.MONTH_NAME))

Resolving Ambiguously Identified Dimensions and Facts
A query subject is considered to be ambiguously defined if it participates in both n
and 1 relationships to other query subjects. An ambiguously defined query subject
is not always harmful from a query generation perspective. We suggest that you
evaluate query subjects using the following cases. The goal of this evaluation is to
prevent unnecessary query splits and to ensure that any splits that do occur are
intentional and correct.

Query Subjects That Represent a Level of Hierarchy
One frequent case of an ambiguously defined query subject that is not harmful is
where the query subject represents an intermediate level of a descriptive hierarchy.
One example is the following Product hierarchy.

Chapter 2. The SQL Generated by IBM Cognos Software 47

In this example, both Product type and Product could be identified as being
ambiguously defined. However, this ambiguity is not detrimental to either the
results generated or the performance of any query using one or more of these
query subjects. You do not need to fix this query pattern because, using the rules
for fact detection, only one fact is identified in any query that combines an item
from the Product forecast or Sales query subjects. It remains a best practice to
collapse hierarchies into a single regular dimension when modeling for analysis
purposes.

Some queries that can be written using this example include the following:

Items from these query subjects are used in
a query:

Query subject that behaves as a fact in the
query:

Product line and Product type Product type

Product line, Product type, and Product Product

Product line, Product type, Product, and
Sales

Sales

Product line and Sales Sales

Product type and Product forecast Product forecast

48 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Resolving Queries That Should Not Have Been Split
If queries are split and should not be split, you must resolve these queries.

Query subjects on the n side of all relationships are identified as facts. We can see
that in the following example, Order Header and Country Multilingual are
behaving as facts. In reality, the Country Multilingual query subject contains only
descriptive information and seems to be a lookup table. From a dimensional or
business modeling perspective, Country Multilingual is an extension of Country.

Why is it a problem to leave the model like this?

Test this model by authoring a report on the number of orders per city, per country
or region. Using this model returns an incorrect result. The numbers are correct for
the cities but some cities are shown as being in the wrong country or region. This
is an example of an incorrectly related result.

Usually the first place to look when you see something like this is in the SQL.

The SQL

In this example, we see a stitched query, which makes sense if we have multiple
facts in the model. A stitched query is essentially a query that attempts to stitch
multiple facts together. It uses the relationships that relate the facts to each other as
well as the determinants for the conformed, or common, dimensions defined in the
model. A stitched query can be identified by two queries with a full outer join. The
wrapper query must include a coalesce statement on the conformed dimensions.

Note the following problems in the SQL:
v The query has no coalesce statement.

Chapter 2. The SQL Generated by IBM Cognos Software 49

v RSUM indicates an attempt to create a valid key.
select
D3.COUNTRY as COUNTRY,
D2.CITY as CITY,
D2.number_of_orders as number_of_orders
from
(select
SALES_BRANCH.CITY as CITY,
XCOUNT(ORDER_HEADER.ORDER_NUMBER for SALES_BRANCH.CITY) as
number_of_orders,
RSUM(1 at SALES_BRANCH.CITY order by SALES_BRANCH.CITY
asc local)
as sc
from
gosales.gosales.dbo.SALES_BRANCH SALES_BRANCH
join
gosales.gosales.dbo.ORDER_HEADER ORDER_HEADER
on (SALES_BRANCH.SALES_BRANCH_CODE = ORDER_HEADER.SALES_BRANCH_CODE)
group by
SALES_BRANCH.CITY
order by
CITY asc
) D2
full outer join
(select
COUNTRY_MULTILINGUAL.COUNTRY as COUNTRY,
RSUM(1 at COUNTRY_MULTILINGUAL.COUNTRY order by
COUNTRY_MULTILINGUAL.COUNTRY asc local) as sc
from
gosales.gosales.dbo.COUNTRY_MULTILINGUAL COUNTRY_MULTILINGUAL
group by
COUNTRY_MULTILINGUAL.COUNTRY
order by
COUNTRY asc
) D3
on (D2.sc = D3.sc)

By looking at the stitched columns in each query, we see that they are being
calculated on unrelated criteria. This explains why there is no apparent relationship
between the countries or regions and cities in the report.

So why do we see a stitched query? To answer that question, we must look at the
model.

In this example, the query items used in the report came from different query
subjects. Country or region came from Country Multilingual, City came from Sales
Branch, and the Number of Orders came from a count on Order Number in the
Order Header query subject.

50 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

The problem is that the query splits because the query engine sees this as a
multiple-fact query. However, the split does not have a valid key on which to
stitch because there is no item that both facts have in common.

There is more than one way to solve this problem but both require understanding
the data.

Solution 1

You can add a filter to Country Multilingual that changes the cardinality of the
relationship to 1-1.
Select *
from [GOSL].COUNTRY_MULTILINGUAL
Where
COUNTRY_MULTILINGUAL."LANGUAGE"=’EN’

Or you can add a filter on the relationship and change the cardinality to 1-1.
COUNTRY.COUNTRY_CODE = COUNTRY_MULTILINGUAL.COUNTRY_CODE
and COUNTRY_MULTILINGUAL.LANGUAGE = ’EN’

Either choice results in a model that has a single fact in this query.

Solution 2

Simplify the model by consolidating the related query subjects. This gives the
greatest benefit by simplifying the model and reducing the opportunities for error
in query generation.

Chapter 2. The SQL Generated by IBM Cognos Software 51

With either solution, the result of the query is now correct.

The SQL is no longer a stitched query.
select
Country.c7 as COUNTRY,
SALES_BRANCH.CITY as CITY,
XCOUNT(ORDER_HEADER.ORDER_NUMBER for Country.c7,SALES_BRANCH.CITY)
as number_of_orders
from
(select
COUNTRY.COUNTRY_CODE as c1,
COUNTRY_MULTILINGUAL.COUNTRY as c7
from
gosales.gosales.dbo.COUNTRY COUNTRY
join
gosales.gosales.dbo.COUNTRY_MULTILINGUAL COUNTRY_MULTILINGUAL
on (COUNTRY.COUNTRY_CODE = COUNTRY_MULTILINGUAL.COUNTRY_CODE)
where COUNTRY_MULTILINGUAL.LANGUAGE=’EN’
) Country
join
gosales.gosales.dbo.SALES_BRANCH SALES_BRANCH
on (SALES_BRANCH.COUNTRY_CODE = Country.c1)
join
gosales.gosales.dbo.ORDER_HEADER ORDER_HEADER
on (SALES_BRANCH.SALES_BRANCH_CODE = ORDER_HEADER.SALES_BRANCH_CODE)
group by
Country.c7,
SALES_BRANCH.CITY

52 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Notices

This information was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2005, 2011 53

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Software Group
Attention: Licensing
3755 Riverside Dr
Ottawa, ON K1V 1B7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

54 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Trademarks

IBM, the IBM logo, ibm.com, ReportNet, and Cognos are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web
at “ Copyright and trademark information ” at www.ibm.com/legal/
copytrade.shtml.

Notices 55

http://www.ibm.com/legal/copytrade.shtml

56 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

Index

A
aggregation 4
aggregation for calculations 17
ambiguous objects 47
ambiguous relationships 22

C
calculated aggregation type 17
calculations

order of operations 17
cardinality

1-1 41
1-n 41
checking 22
dimensions and facts 22
queries 2
rules 2
types 2

concepts 1
conformed dimensions 34

multiple facts 39, 44
conformed star schema groups 34
creating

measure dimensions 33
regular dimensions 30
star schema groups 34

cross-fact queries 22

D
determinants

defining 4
query subjects 14

dimensional data 29
dimensional queries 37

multiple facts and grains 39, 44
single fact 37

dimensionally modeling relational metadata 30
dimensions

ambiguous 47
hierarchies 31
identifying 22
measure 19, 33
model 8
query subjects 8
regular 8, 14, 19, 30
role-playing 23
shared 19
star schema groups 34

DMR (dimensionally modeled relational) metadata 30
double-counting 22, 41, 47

F
fact data 29
fact-less query 34
facts 33

ambiguous 47

facts (continued)
identifying 22

G
granularity 27

H
hierarchies 4, 8

multiple 31

I
imported metadata

checking 22

J
joins

loop 26

L
loop joins 22, 26

M
master-detail tables 29, 33
maximum cardinality 2
measure dimensions 19

creating 33
role-playing 23

minimum cardinality 2
model objects

shortcuts 15
multiple hierarchies 31
multiple valid relationships 23, 26
multiple-fact queries 8, 39, 44
multiple-grain queries 8, 39, 44

N
normalized data sources 29

O
one-to-many relationships 41
one-to-one relationships 41
operations for calculations 17
optional cardinality 2
order of operations for calculations 17

Q
queries

fact-less 34

© Copyright IBM Corp. 2005, 2011 57

queries (continued)
multiple-fact 8, 39, 44
multiple-grain 8
single fact 37
split 49
stitched 22

query subjects
determinants 14
dimensions 8
star schema groups 34

R
recursive relationships 27
reflexive relationships 27
regular dimensions 8, 14, 19

creating 30
hierarchies 31
role-playing 23

relational modeling concepts 1
relationships

1-n 41
ambiguous 22
cardinality 2
checking 22
levels of granularity 27
multiple valid 23, 26

resolving
ambiguous objects 47
split queries 49

role-playing dimensions 23
rules of cardinality 2

S
shared dimensions 19
shortcuts 15
single fact queries 37
snowflaked data sources 29
split queries 49
SQL 37
star schema concepts 28
star schema groups 19

creating 34
multiple conformed 34

stitched queries 22

V
valid relationships

multiple 23

58 IBM Cognos Framework Manager Version 10.1.1: Guidelines for Modeling Metadata

	Contents
	Introduction
	Chapter 1. Guidelines for Modeling Metadata
	Understanding IBM Cognos Modeling Concepts
	Relational Modeling Concepts
	Cardinality
	Determinants
	Multiple-fact, Multiple-grain Queries

	Model Design Considerations
	Where Should You Create Relationships and Determinants?
	What Is Minimized SQL?
	What Is Metadata Caching?
	Query Subjects vs. Dimensions
	Model Objects vs. Shortcuts
	Folders vs. Namespaces
	Setting the Order of Operations for Model Calculations
	Impact of Model Size

	Dimensional Modeling Concepts
	Regular Dimensions
	Measure Dimensions
	Scope Relationships

	Building the Relational Model
	Defining the Relational Modeling Foundation
	Verifying Imported Metadata
	Resolving Ambiguous Relationships
	Simplifying the Relational Model

	Defining the Dimensional Representation of the Model
	Creating Regular Dimensions
	Modeling Dimensions with Multiple Hierarchies
	Creating Measure Dimensions
	Create Scope Relationships

	Organizing the Model
	Star Schema Groups

	Chapter 2. The SQL Generated by IBM Cognos Software
	Understanding Dimensional Queries
	Single Fact Query
	Multiple-fact, Multiple-grain Query on Conformed Dimensions
	Modeling 1-n Relationships as 1-1 Relationships
	Multiple-fact, Multiple-grain Query on Non-Conformed Dimensions

	Resolving Ambiguously Identified Dimensions and Facts
	Query Subjects That Represent a Level of Hierarchy
	Resolving Queries That Should Not Have Been Split

	Notices
	Index
	A
	C
	D
	F
	G
	H
	I
	J
	L
	M
	N
	O
	Q
	R
	S
	V

